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Figure 1: Our method reconstructs realistic hair strands across a wide range of
hairstyles. Hair strands are rendered with different colors to facilitate visualization.

Abstract

Human hair reconstruction is a challenging problem in computer vision, with grow-
ing importance for applications in virtual reality and digital human modeling. Recent
advances in 3D Gaussians Splatting (3DGS) provide efficient and explicit scene repre-
sentations that naturally align with the structure of hair strands. In this work, we extend
the 3DGS framework to enable strand-level hair geometry reconstruction from multi-
view images. Our multi-stage pipeline first reconstructs detailed hair geometry using a
differentiable Gaussian rasterizer, then merges individual Gaussian segments into coher-
ent strands through a novel merging scheme, and finally refines and grows the strands
under photometric supervision.

While existing methods typically evaluate reconstruction quality at the geometric
level, they often neglect the connectivity and topology of hair strands. To address this,
we propose a new evaluation metric that serves as a proxy for assessing topological
accuracy in strand reconstruction. Extensive experiments on both synthetic and real-
world datasets demonstrate that our method robustly handles a wide range of hairstyles
and achieves efficient reconstruction, typically completing within one hour.

The project page can be found at: https://yimin-pan.github.io/hair-gs/
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1 Introduction

Realistic human avatar modeling plays a crucial role in the gaming and virtual reality (VR)
industry. Since the introduction of 3D Morphable Models (3DMM) by Blanz and Vetter [3],
there has been a growing trend toward controllable head modeling. Recent advances in
neural representations have further enhanced this field, enabling high-fidelity facial recon-
structions [8, 13, 21, 29].

Despite these advancements, most head reconstruction methods focus primarily on facial
geometry, often negleting the crucial role hair plays in defining personal identity. Traditional
hair modeling tools are highly skill-intensive and time-consuming, as achieving realistic
results requires the manual creation of a vast number of individual strands. This challenge
has driven a shift toward image-based optimization techniques that aim to automate the hair
reconstruction process.

However, hair reconstruction remains a challenging task due to the complex geometry
of strands, frequent occlusions, and the limitations of conventional keypoint and multi-view
stereo (MVS) techniques [11, 23]. Data-driven approaches [22, 24, 31] leverage learned
priors to infer hair structure from images, enabling the recovery of even occluded inner
volumes. Yet, their generalization capabilities are often limited by the scarcity of high-
quality 3D data.

Recently, Gaussian Splatting [6] has emerged as a popular method for efficient and ac-
curate scene reconstruction. However, its general-purpose design is not directly applicable
for hair modeling. When applied directly, it results in numerous uncontrollable and discon-
nected Gaussians, and struggles particularly with modeling curly strands.

To address these limitations, we propose a novel multi-stage pipeline that adapts the
3DGS framework with constraints specifically tailored for hair strand reconstruction. In
the first stage, we employ a differentiable rasterizer together with adaptive densification to
obtain a dense and detailed representation of visible hair geometry. This step is essential,
as successful merging relies on comprehensive geometry recovery to identify most suitable
candidates. We then introduce a merging scheme based on distance and angle heuristics,
enabling the combination of separated hair segments into longer strands. In the final stage,
we refine the joint positions using a combination of photometric losses and smoothness reg-
ularization. Extensive quantitative and qualitative evaluations demonstrate that our method
is general enough to reconstruct a wide variety of hairstyle and substantially faster than most
data-driven approaches. Our main contributions can be summarized as follows:

* An efficient multi-stage optimization pipeline and a set of losses to supervise hair
directions and prevent the formation of sharp angles.

* A merging scheme to combine short strands into longer ones using geometric heuris-
tics.

* A novel metric for quantitative evaluation of topological strand accuracy.

2 Related Work

Optimization-Based Hair Reconstruction. Early approaches to hair strand reconstruction
typically rely on Structure from Motion (SfM) to estimate hair geometry. For instance, Paris
et al. [20] formulated the optimization problem using 2D orientation fields derived from
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Gabor filters as constraints. Luo et al. [15] introduced a Markov Random Field (MRF)
optimization to generate oriented point clouds, which were further refined with Poisson sur-
face reconstruction and extended through visual hull carving and orientation-based refine-
ment [16]. Despite these advances, such methods often produce sparse and noisy results
due to the planar neighborhood assumptions of stereo vision [11], which do not hold for
hair strands. Works like [1, 2, 26] addressed the reconstructing problem using properties
from line primitives. Nam et al. [19] similarly tackled the challenge using LP-MVS, in-
corporating line constraints within a multi-phase optimization to recover accurate strands.
Nevertheless, estimating inner hair volumes from images remains impractical due to heavy
occlusion. More recently, [25] address this issue by introducing guide strands to interpolate
and reconstruct full hair volumes.

Learning-Based Hair Reconstruction. Learning-based approaches have progressed rapidly
with the release of public datasets such as [4, 30], enabling model pretraining on synthetic
hair data. Recent methods employ neural architectures to synthesize 3D hair strands from
images. For example, [33] uses a CNN-based autoencoder to infer strands from a single im-
age, while [32] generates volumetric hair fields using GANs. More recent works [22, 24, 27]
leverage implicit neural representations, texture-based encodings, and diffusion priors to
further improve fidelity and realism. Nevertheless, these methods are usually limited by the
scarcity of high-quality training data, often resulting in reduced expressiveness and over-
smoothing, as shown in the experiments (see Figure 4).

Radiance Fields and Volumetric Rendering. The introduction of Neural Radiance Fields
(NeRF) [18] and volumetric rendering has greatly advanced photorealistic human avatar
modeling, enabling flexible representation of line-like structures such as hair, which are dif-
ficult to capture with traditional mesh-based methods. More recently, 3DGS [6] has emerged
as an explicit and efficient alternative, representing scenes with 3D Gaussians that naturally
align with the structure of hair strands. While prior works [14, 31, 34] typically use 3DGS
for refining coarse geometry, our approach leverages 3DGS from the begining to recover
precise hair segments, which are then merged into complete strands.

3 Method

Given a set of multi-view images of a static scene, our method reconstructs an accurate 3D
hair model of the subject in the form of polylines. Similar to [6], we begin by preprocessing
the images using COLMAP [23] to obtain camera poses and a sparse point cloud. However,
due to the sensitivity of 3DGS to initialization, we use the vertices obtained from fitting
a FLAME model [10]. Additionally, we estimate 2D orientation maps and corresponding
confidence maps using Gabor filters [20], and extract hair segmentation masks using off-the-
shelf methods [5, 12]. The complete pipeline is illustrated in Figure 2, which consists of three
main stages: geometry reconstruction (Section 3.1), strand generation (Section 3.2), and
final refinement (Section 3.3). Unlike other concurrent works, our approach leverages the
flexibility of unconstrained Gaussian splatting to recover as many hair segments as possible,
which are then merged into coherent strands.

The final output is a set of strands S = {Si,...,S,}, each comprising a variable number
of linked 3D points S; = {p1,...,pm},pj € R>. In contrast to most existing methods [17, 19,
22,24, 34], we do not explicitly specify the number of points per strand, as this is typically
unknown and highly dependent on the shape and complexity of the curve being modeled.
Instead, we rely on the optimization process and gradient feedback to dynamically determine


Citation
Citation
{Luo, Li, Paris, Weise, Pauly, and Rusinkiewicz} 2012

Citation
Citation
{Luo, Zhang, Zhang, and Rusinkiewicz} 2013

Citation
Citation
{Lindeberg} 2012

Citation
Citation
{Bartoli and Sturm} 2005

Citation
Citation
{Bay, Ferrari, and Van~Gool} 2005

Citation
Citation
{Usumezbas, Fabbri, and Kimia} 2016

Citation
Citation
{Nam, Wu, Kim, and Sheikh} 2019

Citation
Citation
{Takimoto, Takehara, Sato, Zhu, and Zheng} 2024

Citation
Citation
{Hu, Ma, Luo, and Li} 2015

Citation
Citation
{Yuksel, Schaefer, and Keyser} 2009

Citation
Citation
{Zhou, Hu, Xing, Chen, Kung, Tong, and Li} 2018

Citation
Citation
{Zhang and Zheng} 2019

Citation
Citation
{Rosu, Saito, Wang, Wu, Behnke, and Nam} 2022

Citation
Citation
{Sklyarova, Chelishev, Dogaru, Medvedev, Lempitsky, and Zakharov} 2023

Citation
Citation
{Wu, Ye, Yang, Fu, Zhou, and Zheng} 2022

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020

Citation
Citation
{Kerbl, Kopanas, Leimkuehler, and Drettakis} 2023

Citation
Citation
{Luo, Ouyang, Zhao, Jiang, Zhang, Zhang, Yang, Xu, and Yu} 2024

Citation
Citation
{Zakharov, Sklyarova, Black, Nam, Thies, and Hilliges} 2024

Citation
Citation
{Zhou, Chai, Wang, Winberg, Wood, Sarkar, Gross, and Beeler} 2024

Citation
Citation
{Kerbl, Kopanas, Leimkuehler, and Drettakis} 2023

Citation
Citation
{Sch{ö}nberger, Zheng, Frahm, and Pollefeys} 2016

Citation
Citation
{Li, Bolkart, Black, Li, and Romero} 2017

Citation
Citation
{Paris, BriceÃ±o, and Sillion} 2004

Citation
Citation
{Ke, Sun, Li, Yan, and Lau} 2022

Citation
Citation
{Liu, Choi, Wang, and Hwang} 2022

Citation
Citation
{Maeda, Takayama, and Taketomi} 2023

Citation
Citation
{Nam, Wu, Kim, and Sheikh} 2019

Citation
Citation
{Rosu, Saito, Wang, Wu, Behnke, and Nam} 2022

Citation
Citation
{Sklyarova, Chelishev, Dogaru, Medvedev, Lempitsky, and Zakharov} 2023

Citation
Citation
{Zhou, Chai, Wang, Winberg, Wood, Sarkar, Gross, and Beeler} 2024


4 PANETAL.: HAIR STRAND RECONSTRUCTION BASED ON 3D GAUSSIAN SPLATTING

Preprocessing Geometry Reconstruction

Images FLAME mesh |
>

Differentiable
Gaussian
rasterizer

Orientation
COLMAP field FLAME fitting
estimation

Hair mask
estimation

Adaptive
densification

Hair masks Orient. maps

Images

Strand Generation Growing and Refinement

s=(r,1,1)

\ : " Differentiable

o~ — —>

ofy T Gaussian C’v u \ =
[g Merge a,m, sh rasterizer SF“ Refin s Mergs

Gaussian

3D Gaussians Reconstructed Strands
Strands

Figure 2: An overview of the full pipeline. The process begins with image preprocessing
and geometry reconstruction using 3D Gaussians. Hair strands are created by merging Gaus-
sians, followed by a refinement stage to optimize joint positions and the topology.

whether the current number of points is sufficient or if further densification is required.

3.1 Stage I: Geometry Reconstruction

The first stage of our pipeline reconstructs hair strand geometry by optimizing photomet-
ric losses within an analysis-by-synthesis framework, as shown in Figure 3. Following the
original 3DGS, we initialize anisotropic 3D Gaussians from the input point cloud, each pa-
rameterized by a position mean y € R3, per-axis scale s € R3, a rotation matrix R (as a
quaternion) and an opacity value 0 < o (o) < 1, with o(x) denoting the sigmoid function.
We introduce an additional mask value 0 < 6(m) < 1, which is crucial for restricting the
merging process to valid hair regions and for filtering out non-hair elements in the final
output. The corresponding Gaussian distribution in world space is:

G(x) = e 2= ¥ — RgSTRT )

To focus on geometry rather than appearance, we represent the radiance field using spherical
harmonics (SH) coefficients of degree 0, thereby avoiding view-dependent color effects.

We optimize the Gaussian parameters using the differentiable rasterizer R from [6]. The
optimization is driven by a combination of photometric losses, £ and Lpssia, together with
a bidirectional orientation loss:

Lo = Ag(B(x,y),0(x,y)Ca(x,y), Ao(61,62) =min(|0 — 62|, —[6) — 6s])

@
where 0 and 0 represents the rendered and precomputed orientation maps, and Cy the corre-
sponding confidence map. This loss accelerates convergence toward the correct hair orienta-
tion.

To further supervise a, we introduce a mask loss based on the binary cross-entropy
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Figure 3: Overview of the first-stage process. From an initial point cloud, 3D Gaussians are
optimized using the differentiable rasterizer with the supervision of a combination of RGB,
orientation, and mask losses (Lrgp, Lo, L) The densification process populates Gaussians
in areas with missing geometry.

between the precomputed mask M (x,y) and the rendered mask M (x,y):

H W
:7%;; X,y log( (x, ))+(1*M(an))log(lfM(x’y))] 3)

The overall objective for the first-stage is:
L tirst = (1 = Apssim) £1 + Apssin Lpssiv + Ao Lo + AnLm “4)

We use the default 3DGS densification mechanism to add Gaussians where geometry is
missing, resulting in a dense and detailed scene representation for the next stages.

3.2 Stage II: Strand Generation

Strand Representation. To continue leveraging the 3DGS framework for strand optimiza-
tion, we represent each hair strand as a chain of linked joints, similar to [14, 34]. In contrast
to the first stage, rasterization is now performed on the segments connecting these joints,
rather than on the joints themselves. Each segment is modeled as a cylinder aligned with
the x-axis, with its scale defined as (||pj+1 — pj||2, Tj, Tj), where 7; is a learnable thickness
parameter. The center u of each segment is set to the midpoint between its endpoints, and
the rotation matrix R is computed to align the x-axis vector X = (1,0,0) with the segment

direction pj = % using the Rodrigues rotation formula:
KZ
R=I4+K+——, K=XXp;j 5
TR+ 1+v-d’ P )

Other segment properties, such as opacity ¢, mask m, and color sh, are optimized indepen-
dently.
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Merging Scheme. Initially, each Gaussian from the first stage is converted into a short
strand with two joints, based on its position and direction. To form longer and more realistic
(curvy) strands, we iteratively merge these short strands. This merging is formulated as an
assignment problem, where strand endpoints (tips and roots) are nodes in a bipartite graph,
and edge costs are determined by spatial distance and angular difference. While the Hun-
garian Matching Algorithm [9] can find the optimal solution, its computational and memory
requirements are prohibitive for our large-scale problem (up to half a million nodes). There-
fore, we use a more efficient greedy approach: candidates are filtered by predefined distance
and angle thresholds, sorted by cost, and only the lowest-cost matches are kept. We imple-
ment this efficiently using a K-D tree-based nearest neighbor search.

For each selected pair, a new joint is created at the midpoint, and the new strand is
formed by connecting the original endpoints to this joint. This process is illustrated in Strand
Generation of Figure 2.

To ensure high confidence in the initial merging process, we use very restrictive thresh-
olds: d,,, = 2mm and 6,, = 20°.

3.3 Stage III: Growing and Refinement

Geometry Refinement. After merging, we observe a gradual loss of geometric accuracy,
mainly due to the naive placement of new joints at the midpoints of merged endpoints. To
correct this, we refine joint positions by reintroducing image-based supervision with the
losses from Stage 1.

Unconstrained optimization can also cause unnaturally sharp angles between connected
segments. To prevent this, we add an angle smoothness loss that penalizes large direction
changes. Let C be the set of all connected segment pairs (a,b), p,, Pp their normalized
direction vectors, and 6 an angle threshold. The loss defined as:

1 cos  (Pa-Pp)  if Pu- Py < cos(6y)
Lmooth = 62,, Oup= - ‘ 6
smooth = ¢ ( L O u {0 otherwise ©

a,b)eC

The overall loss for optimizing the joint positions of our Gaussian strands GS is:

Erhird = £first + )Lsmooth['smoolh @)

Topology Refinement. Empirically, we find that sharp angles most often arise when mod-
eling curly strands. While the smoothness loss helps prevent such artifacts, it alone is not
sufficient to capture the complexity of curly hair. To address this, we split segments that
exceed a length threshold, inserting new joints at their midpoints. This increases the degrees
of freedom and allows the model to better represent curves. Subsequent image-based super-
vision further refines these new joint positions, resulting in more accurate strand shapes (see
the Growing and Refinement stage in Figure 2).

Despite these improvements, reconstructed strands may still be shorter than in reality
or appear as multiple disconnected segments. This occurs because the merging algorithm
cannot always identify endpoints belonging to the same underlying strand if they are not
sufficiently close. To alleviate this problem, we gradually relax the merging criteria during
optimization by increasing the distance and angle thresholds from d,, = 2mm and 6,, = 20°
at the start, to d,,, = 4mm and 6,, = 40° by the end. This strategy enables more merges and
nearly doubles the average strand length.
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Finally, we filter out non-hair geometries using the learned mask values. The final result
is a clean set of hair strands represented as polylines, constructed from the optimized joint
positions and connectivity.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate our method and baselines on both synthetic and real-world datasets.
For quantitative analysis, we use the USC-HairSalon [4] dataset, which is, to our knowledge,
the largest publicly available hair dataset, containing 343 hairstyles with 10,000 strands and
100 joints per strand. We also use the Cem Yuksel hair models [30] as a test set; these models
are smaller in scale and not used for training by learning-based baselines. For each sample,
we generate 16 input images by rotating a virtual camera around the subject in OpenGL, us-
ing simple ambient and diffuse lighting. Hair strands are rendered as line primitives together
with the head mesh and assigned brown color with slight variations for realism.

For qualitative evaluation, we also test on the real-world NeRSemble dataset [8], which
features real head captures with diverse hairstyles.
Baselines. We compare our method against state-of-the-art 3D hair reconstruction approaches
based on multiview images, including Neural Haircut [24] as a representative data-driven
method, and classical SfM-based methods LP-MVS [19] and Strand Integration [17]. For
LP-MVS, we use the implementation provided by the authors of Strand Integration, as no
official code is available. Both methods return a directed point cloud without topological
information, so we perform additional postprocessing to convert them into strands using the
forward Euler method described in [19]. However, this lacks the mean-shift and growing
steps which are essential for producing clean, long hair strands. We therefore keep both
versions and refer to the postprocessed results as LP-MVS" and Strand Integration’.
Implementation Details. For the initial geometry reconstruction, we optimize the Gaus-
sians for 30,000 iterations using the Adam optimizer [7]. The merging algorithm is run until
no candidates remain, followed by an additional 30,000 iterations of refinement. All other
hyperparameters are adopted directly from [6]. Experiments are conducted on a NVIDIA
RTX 4090 GPU and AMD Ryzen 9 7950X CPU, with the entire pipeline typically com-
pleting in about 1 hour. Our fully optimization-based approach is significantly faster than
learning-based methods, which are generally more computationally intensive. For example,
Neural Strands [22] takes 48 hours on a NVIDIA V100, Neural Haircut [24] requires ap-
proximately 120 hours on our setup, and GroomCap [34] takes a similar amount of time on
even higher-end hardware.

4.2 Evaluation Measures

Due to the difficulty of finding true correspondence between points. We follow common
practices from[19, 24, 25] to define precision, recall and f1-score based on matched nearest
neighbors under a distance and angle threshold.

Strand Consistency. A key limitation of these metrics is that they only assess geometric
accuracy at the point cloud level, ignoring the essential topological structure of hair strands.
As long as the location of the points is correct, the metrics do not penalize even if the edges
are completely wrong. To address this, we introduce a novel metric, strand consistency (SC),
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Figure 4: Comparison on real-world subjects. Our method excels on Figure 5: Ablation
challenging hairstyles, especially curly hair. Colors either differentiate study. Full method
strands (Ours and Neural Haircut) or direction (others). gives best results.

which evaluates the connectivity of points within hair strands. Specifically, the metric mea-
sures, for each Ground truth (GT) strand, the highest fraction of its points that are matched
to points in a single predicted strand, and then averages this value over all strands.

Let Sg and Sp denote the sets of ground truth and predicted strands, respectively. And
let g and p be points on s¢ and sp. I(+) is the indicator function and d; and 6; are the distance
and angle thresholds. The computation is as follows:

1 1
C=— Z max ( Z I3pesp:|lg—pla<d: A 6g$p<91)> (8)

SGESG spESP |SG | 8ESG

Intuitively, this metric looks at each GT strand and finds the predicted strand with the
most matching directed points.

4.3 Comparison

Quantitative Results. On the USC-HairSalon dataset, our method achieves higher precision
but lower recall than Strand Integration, indicating that while MVS-based methods are robust
to input variations, they often produce noisy results with incorrect directions due to reliance
on hand-crafted filters (see Table 1). Neural Haircut shows consistently lower scores across
all metrics, reflecting limited generalization to the synthetic evaluation data. In contrast, our
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Thresholds: mm / degree Thresholds: mm / degree

Method Precision Recall F-score SC Method Precision Recall F-score SC

2/20 4740 | 2/20  4/40 | 2/20  4/40 | 220 4/40 2/20 4740 | 2/20  4/40 | 2/20  4/40 | 2/20  4/40
Ours 0.445 0.769)0.182 0.545 [ 0.256 0.636 | 0.050 0.189 Ours 0.411 0.736 | 0.139 0.468 | 0.207 0.572 | 0.041 0.166
Neural Haircut 0.187 0.603]0.040 0.192 [0.064 0.291 [ 0.023 0.094 Neural Haircut 0.190 0.639]0.008 0.066|0.015 0.120 [ 0.006 0.042
LP-MVS 0.388 0.643]0.209 0.505 [0.271 0.565| - - LP-MVS 0.302 0.532]0.052 0.289|0.089 0375 - -
LP-MVST 0.229 0.474]0.098 0.345[0.136 0.398 [ 0.019 0.046 LP-MVST 0.212 0.472]0.033 0.226|0.056 0.306 [ 0.015 0.064
Strand Integration | 0.497 0.7120.243 0.533]0.326 0.608 | - - Strand Integration | 0.154 0.346 | 0.021 0.1360.037 0.195| - -
Strand Integl‘atic‘n‘r 0.258 0.486]0.117 0.384 [0.161 0.427 [0.022 0.053 Strand Integration‘t 0.106 0.300]0.012 0.107]0.022 0.157 [ 0.007 0.038

Table 1: Quantitative comparison on ag-  Table 2: Quantitative comparison on a chal-

gregated samples from the USC-HairSalon
dataset. Higher values indicate better results
and are marked in bold.

lenging curly hair sample from the Cem-
Yuksel hair model. Higher values indicate
better results.

fully optimization-based approach, which makes fewer assumptions from the input, demon-
strates greater robustness and generalization. On the challenging curly hair sample from the
Cem-Yuksel hair model, our method outperforms all others across every metric (Table 2),
and achieves the highest strand consistency, indicating more reliable reconstruction of cor-
rect strand connectivity.

Qualitative Results. Further analysis on the NeRSemble dataset [8] (Figure 4) shows results
for three hairstyles: straight, curly, and long hair. Neural Haircut improves on real-world
data, generally matching the overall shape for straight hair. However, only our method ac-
curately captures fine details, such as thin and floating strands in the female subject. For
curly hair, which is especially challenging due to rapid directional changes, LP-MVS and
its variants capture only the sparse outer geometry, while Neural Haircut fails to represent
the overall shape. In contrast, our optimization-based method, free from prior assumptions,
robustly reconstructs all tested hairstyles.

4.4 Ablation Study

Thresholds: mm / degree
Merging thresholds Precision Recall F-score SC
2/20  4/40 | 2/20  4/40 | 2/20  4/40 | 2/20 4/40
Lmm/10° — 2mm/20° | 0.4264 0.7606|0.1281 0.4819| 0.197  0.59 [0.048 0.1822
2mm/20° — 4mm/40° | 0.4639 0.8037| 0.15  0.54 |0.2277 0.6438 |0.055 0.2196
4mm/40° — 6mm/60° | 0.4618 0.8213 | 0.155 0.5383| 0.233  0.65 |0.055 0.2262
6mm/60° — 8mm/80°|0.4355 0.775 |0.1376 0.5182| 0.271 0.565 | 0.05 0.1866

Table 3: Impact of different initial and final merging thresholds on reconstruction perfor-
mance. Results show that performance remains stable within a reasonable range, while
overly extreme thresholds degrade accuracy. Bold numbers indicate the best results.

We evaluate the impact of key design choices in our method (Figure 5). Removing the
angle smoothness loss leads to unrealistic, spiky strands due to the lack of regularization on
segment directions. Skipping the third-stage optimization, which refines joint positions and
adaptively inserts points, produces coarse and inaccurate strands, as the initial merging only
yields rough approximations. Restrictive merging criteria in the second stage prevent short
strands from being combined into longer ones, while enforcing a limited number of joints
constrains the representation to short, straight segments. Without orientation supervision,
hair segments often deviate in incorrect directions. In contrast, the full method integrates all
components and achieves the most faithful strand reconstructions.
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We further analyze the impact of different merging thresholds (Table 3). As shown in
the first two rows, varying the thresholds within a reasonable range leads to only minor
performance differences. A noticeable drop in accuracy occurs only when the thresholds are
pushed to extremes—either overly restrictive or overly permissive, as in the first and fourth
rows—indicating that our method remains robust to threshold selection as long as it stays
within practical bounds.

5 Conclusion

In this work, we introduce a fully optimization-based method for hair reconstruction from
multi-view images, capable of handling a wide range of hairstyles without relying on pri-
ors from synthetic datasets. Our multi-stage pipeline first estimates an accurate Gaussian
representation using 3DGS, then merges individual segments to form complete hair strands.

To address the limitations of existing evaluation metrics, which overlook the structural
connectivity of hair strands, we propose a novel metric as a proxy for topological accuracy.

Extensive experiments on both synthetic and real-world datasets show that our method
outperforms existing approaches, producing highly detailed hair models—including fine,
floating strands—while being considerably faster than data-driven methods, with reconstruc-
tions completed in under one hour.

Beyond hair, our framework could naturally extend to other line-like structures such as
cables or wires, requiring minimal adaptation of the segmentation model.

Despite these strengths, some limitations remain. Our merging criteria can prevent effec-
tive merging of Gaussians from the same strand, resulting in shorter reconstructed strands.
As discussed before using a variation of Hungarian algorithm for optimal matching could
address this. Additionally, reconstructed strands are not necessarily attached to the scalp,
limiting their use in rendering engines; future work could address this by pinning strand
roots to the surface and growing strands as in [28, 34].
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